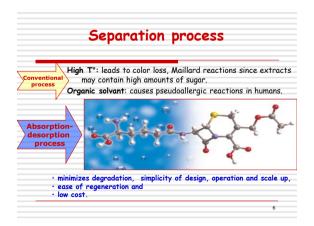
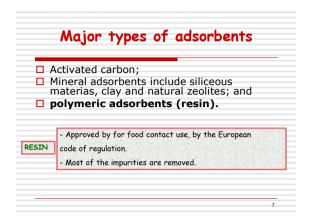
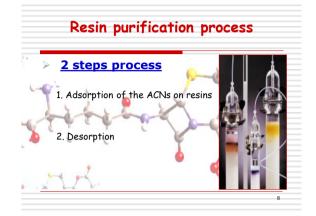
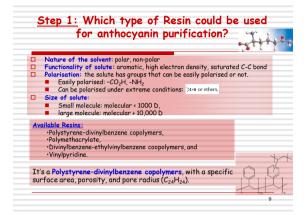


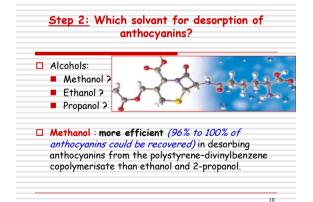
Justine Y.Phuong P. H. BOFFO

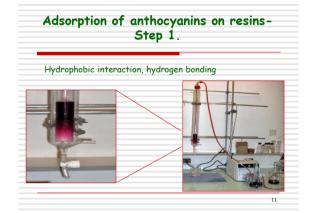

Faculty of Food Science and Technology Nong Lam University, Vietnam






ORAC	value ap	ply to wate	er-soluble .	antioxidant	's	
The high	er the num	ber, the st	ronger the	antioxidan	t propertie	5.
	Açai	Blackberry	Strawberry	Raspberry	Red dragon	White dragon
ORAC value	48,6 - 61,5	13,7 - 25,1	18,3 - 22,9	19,2 - 22,6	7.59-10.76	2.96-5.23
	n Radical Absor an,D.,2007, US		γ) , (μmol eq	trolox /g)	1	1




I

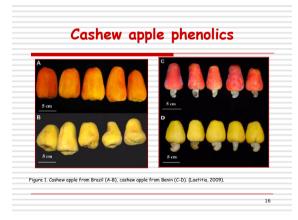


		Juice	Final Extract	Yield ACN % (extract/juice)	Yield DM % (extract/juice)	Purity of final extract (ACN/DM
2	ACN contents (mg/100mL)	40,8	130,8		6.05	19.46%
La la	E ^{1%} lcm	4	36 96	0,05	19,4070	
8	VI/BI	24.6	34.1			
=	ACN contents (mg/100mL)	31,2	54,3	87	31,32 8%	8%
S.	E ^{1%} Icm	17,8	48	8/		
•	VI/BI	54.4	51			

13

Research Proposal

Extraction and purification of Polyphenols from cashew apples waste and of betalains from pitaya by-products


Casnew	appie	pnenolics	
		ted, purified and from an Indian va	riety,

i.e. quercetin 3-O-galactoside, myricetin, and quercetin.
 2001, Moura & 2007 de Abreu, colorimetrically

П

- measured yellow flavonoids and anthocyanins from Brazilian variety... without further characterisation.
- 2009, Laetitia extracted Monomeric phenols by acetone/water (60:40) from the skin and flesh of four cashew apple from Brazil and Bénin (West Africa).
- 2012, ADOU, phenolic profile of the two varieties of cashew (anacardium occidentale L.) cultivated in Côte d'Ivoire.

15

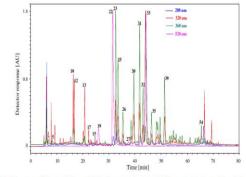
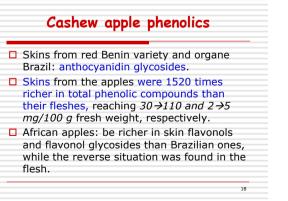
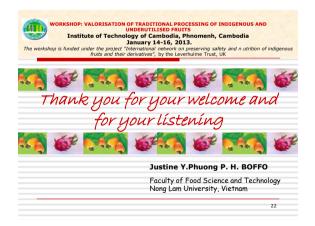



Fig. 2. FPLC chromatpranes of skin entract of cachew apple (Parakon Rouge water)). [5] pallic acids. [12, 13] p-commaric acid conjupates; [15] opanidin heunside; [10] protunid heunside; [20] mayicritin theunside; [20] mayicritin theun

Dragon fruit phenolics			
	lylocereus undatus :white dragon fruit and lylocereus polyrhizus : red dragon fruit.		
d s c	otal phenolic content (TPC) assay emonstrated that peels of both <i>Hylocereus</i> pecies contained higher phenolic ontent than the pulps. The phenolic content in peels of <i>white dragon</i>		
	was higher than <i>red dragon</i> ,		
	but the phenolic content in pulps of <i>white</i> <i>dragon</i> was much lower than <i>red dragon</i> .		
Nurliyana	a, 2010		

Dragon fruit phenolics


in order to gain better views on the antioxidant level and activities in *Hylocereus* species,...

→ further studies on purification, identification and quantification of each phenolic compound and other non-phenolic compounds such as carotenoids and betalains

20

Extraction technology and Purification Process

	Extraction techniques, which have been replacing conventiona ones, include:
	 supercritical fluid extraction (SFE),
	pressurized liquid extraction (PLE),
	microwave-assisted extraction (MAE) and
	 ultrasound-assisted extraction (UAE).
	Membrance extraction
The	ese alternative techniques reduce considerably the use of
	solvents and accelerate the extraction process.
	Purification polymeric adsorber resin: polystyrene-
	divinylbenzene copolymerisate polymer (PSDVB).

